Tampilkan postingan dengan label Under 12. Tampilkan semua postingan
Tampilkan postingan dengan label Under 12. Tampilkan semua postingan

Sabtu, 30 Juli 2011

The Six Pillars of Character®


The CHARACTER COUNTS! approach to character education doesn't exclude anyone. That's why we base our programs and materials on six ethical values that everyone can agree on — values that are not political, religious, or culturally biased. Use the points below to help young people understand the Six Pillars, and use the mnemonic devices at right to help them remember.
For a more detailed discussion of the Six Pillars, consult our book, Making Ethical Decisions, reprinted in part here.

Trustworthiness

Be honest • Don’t deceive, cheat, or steal • Be reliable — do what you say you’ll do • Have the courage to do the right thing • Build a good reputation • Be loyal — stand by your family, friends, and country

Respect

Treat others with respect; follow the Golden Rule • Be tolerant and accepting of differences • Use good manners, not bad language • Be considerate of the feelings of others • Don’t threaten, hit or hurt anyone • Deal peacefully with anger, insults, and disagreements

Responsibility

Do what you are supposed to do • Plan ahead • Persevere: keep on trying! • Always do your best • Use self-control • Be self-disciplined • Think before you act — consider the consequences • Be accountable for your words, actions, and attitudes • Set a good example for others

Fairness

Play by the rules • Take turns and share • Be open-minded; listen to others • Don’t take advantage of others • Don’t blame others carelessly • Treat all people fairly

Caring

Be kind • Be compassionate and show you care • Express gratitude • Forgive others • Help people in need

Citizenship

Do your share to make your school and community better • Cooperate • Get involved in community affairs • Stay informed; vote • Be a good neighbor • Obey laws and rules • Respect authority • Protect the environment • Volunteer

Source : charactercounts.org

Rabu, 18 Juni 2008

Teachers Need More Knowledge of How Children Learn Mathematics

by Constance Kamii

Teachers need as much scientific knowledge about how children learn mathematics as physicians have about the causes of illnesses. Because of this need, teacher-preparation programs must change. Specific examples from classrooms illustrate this need.

I once wondered why some first graders were getting such answers as 3 + 4 = 4 (*1+1=11). By watching them, I found out that they were putting three counters out for the first addend and then four for the second addend, including the three that were already out.

Errors of this kind result from prematurely teaching a rule to follow. According to this rule, one must put counters out for the first addend, more counters for the second addend, and count all of them to get the answer. This rule works for children who already know that addition is the joining of two sets that are disjoint. However, the rule is superfluous for those who have constructed this logic, and it causes errors for those who have not constructed it.

Another example of imposing a rule that is either superfluous or premature is teaching counting-on to children who are counting-all. Counting-all refers to solving 3 + 4 by counting out three counters, then four other counters, and counting all of them again ("one-two-three-four-five-six-seven"). In counting-on, by contrast, children say "four-five-six-seven."

With scientific research replicated worldwide, Piaget showed that all children construct, or create, logic and number concepts from within rather than learn them by internalization from the environment (Piaget 1971; Piaget and Szeminska 1965; Inhelder and Piaget 1964; and Kamii 2000). Studying the research leads teachers to understand that addition involves part-whole relationships, which are very hard for children to make and which cannot be taught through practice and memorization. To add two numbers, children must put two wholes together ("three" and "four," for example) to make a higher-order whole ("seven") in which the previous wholes become two parts. When young children cannot think simultaneously about a whole and two parts, they count-all by changing both the "three" and the "four" into ones. Making them count-on is harmful when they cannot mentally make the part-whole relationship necessary to count-on.

When teachers study Piaget's theory and replicate the aforementioned research, they can understand why some first graders cannot count-on. When children have constructed their logic sufficiently to make the part-whole relationship of counting-on, they give up counting-all, just as babies give up crawling when they can walk. I hope that the day will come when teachers entering the classroom and those already in the classroom have as much scientific knowledge about how children learn mathematics as physicians have about the causes of illnesses. To reach this vision, the teacher-preparation programs must change.

References

Inhelder, Barbel, and Jean Piaget. The Early Growth of Logic in the Child. New York: Harper & Row, 1964.

Kamii, Constance. Young Children Reinvent Arithmetic. 2nd ed. New York: Teachers College Press, 2000.

Piaget, Jean. Biology and Knowledge. Chicago: University of Chicago Press, 1971.

Piaget, Jean, and Alina Szeminska. The Child's Conception of Number. New York: W. W. Norton & Co., 1965.

Constance Kamii, ckamii@uab.edu, is a professor of early childhood education at the University of Alabama at Birmingham. She studied under Piaget for parts of fifteen years to become able to use his theory in early childhood education.

*in indonesia often happened